Virginia Tech Atomic Energy Laboratories

In July of 1956, Virginia Tech became the first university in the United States to install a Nuclear Reactor Simulator. The simulator was installed as part of an atomic energy laboratory in Davidson Hall which was home to the Department of Physics at that time.

The TECHGRAM  Vol. XXXIII, No. 7 JANUARY 1, 1956   Tech First University To Get Nuclear Reactor Simulator  Device Along With Accelerator Being Built By Staff Will Make One Of Best Instructional Atomic Labs In Country  Virginia Tech is the first college or university in the country to have a nuclear reactor simulator. An order has been placed, John W. Whittemore, dean of engineering and architecture, announced Dec. 14. The reactor simulator that will be installed here is similar to the one which the United States exhibited at the Geneva Conference.  Leeds and Northrup Co. of Philadelphia has been contracted to build the installation. That company has advised officials here that Virginia Tech will be the first college or university in the country to have such a facility.  Delivery is scheduled for spring. It will be placed into immediate operation, Dr. Thomas M. Hahn, Jr., head of the physics department, explained.  This simulator with the nuclear accelerator and other equipment that is presently available from outside sources will make the atomic energy laboratory at Virginia Tech one of the most complete of any college in the country, Dean Whittemore pointed out.  It will be possible through this equipment and staff at Virginia Tech not only to give the best training for personnel in this field, but also to do many kinds of research for all industries interested in the use of atomic energy.  Many of the staff members of the science and engineering departments have had training and experience at atomic energy installations and have made significant contributions in this field.  The nuclear reactor simulator is the answer to the question of how nuclear reactor theory and operation can be taught when costly reactors are not readily available. The device consists of a regular reactor control console, a model reactor, and an electronic analog computer. The electronic computer causes the model reactor to respond just as would an actual thermal nuclear reactor, and by suit- able adjustments an operator can obtain experience necessary for operating the various types of nuclear reactors.  Despite its tremendous value as an educational installation, the reactor simulator is priced at a fraction of the cost of a reactor, and does not require the special building and large operating budget necessary for a nuclear reactor.  The new graduate degree in nuclear engineering physics is in response to suggestions from industry and was set up after much study. Virginia Tech for several years has been offering course work in the nuclear field, and quite extensive research programs have been administered by the Virginia Engineering Experiment Station of the Virginia Polytechnic Institute. Virginia industries are contributing heavily to the program, and college officials hope that payment for the reac- tor simulator can also be made without the use of state funds.  Dean Whittemore reports that the new program, which is dedicated to the specific end of training and research in the nuclear field, is a joint engineering and physics effort. The program is under the direction of Dr. Hahn and will utilize the combined equipment and staff resources of several engineering and science departments.  Graduates in either engineering or science are eligible for study toward the new graduate degree.  Dr. Hahn states that the plans for the program are in line with the general Atomic Energy Commission policy of encouraging university training of nuclear scientists.  Plans are underway for Virginia Tech to be host to a two-day Oak Ridge Regional Symposium to be held during the coming summer in cooperation with the Oak Ridge National Laboratory and Oak Ridge Institute of Nuclear Studies. Virginia Tech will also offer at that time a two-week short course, featuring lecturers from industry prominent in the atomic energy field.  To start up the reactor simulator, Dr. Hahn explained, a trainee operates the same sort of controls as he would if he were at an atomic energy installation. As the rods of the reactor begin rising in the scale-model of the core, recording instruments draw continuous records of the reactor operating conditions. When the reactor-model reaches the critical operating range, this is recorded on the simulator.  Then the trainee carries the reactor up to the desired level. As the pile rods rise still higher, the indicating instruments keep the trainee posted on operating conditions. Once the reactor-model is up to the desired power level, servomechanical controls take over. If the trainee fails to judge correctly the various factors and reactor operation threatens to go beyond safe limits, the recording instruments automatically drop the rods. Or, if the student realizes that reactor operation is threatening to get out of hand, he can hit an emergency button on the console with the same results.  Also to be used for training in the new nuclear engineering physics program, as well as basic nuclear research, is the two million volt nuclear accelerator now nearing completion at Virginia Tech. This accelerator, although it will be valued at approximately $100,000, has cost the State of Virginia nothing. Funds and materials have been contributed through the Virginia Tech Educational Foundation and Virginia Engineering Experiment Station by Virginia industries interested in the nuclear program. The accelerator is being built by staff members and graduate students working under the supervision of Dr. Hahn, and Dr. Andrew Robeson '50, associate professor of physics. Graduate students working on the machine include John Rogers, of Front Royal, a graduate of the United States Naval Academy who is doing a master's thesis on features of the machine; David Oliver, of Washington, a graduate of VPI, and George Bell, of Berea, Ky., a graduate of Berea College. The Virginia Tech nuclear accelerator, or atom-smasher, will be used to bombard various materials of interest in the atomic energy field.  An editorial commending Virginia Tech on its progressive action appeared in the Dec. 15 "Roanoke Times."
Tech First University to Get Nuclear Reactor Simulator. January 1, 1956, The Techgram, Special Collections and University Archives, Virginia Tech.
Virginia Tech is first college to own nuclear reactor simulator. July 30, 1956. WSLS-TV News Film Collection, 1951-1971. Special Collections, University of Virginia. https://search.lib.virginia.edu/sources/uva_library/items/uva-lib:2267277

The laboratory also included a two-million-volt nuclear accelerator “built by staff members and graduate students,” and the “first university-owned graphite-moderated exponential reactor”, a sub-critical reactor made possible after the Atomic Energy Commission (now the Nuclear Regulatory Commission) approved Virginia Tech to receive “a neutron source and 2,500 pounds of natural uranium metal”.

THE TECHGRAM Vol. XXXIII, No. 19 JULY 1, 1956 Tech Gets Uranium For Reactor A neutron source and 2,500 pounds of natural uranium metal, to be used in connection with expanding instruction in nuclear engineering, have been approved for Virginia Tech, the Atomic Energy Commission announced in Washington June 21. The uranium will be used by Virginia Tech in the construction of the first university-owned graphite-moderated exponential reactor. Commenting on the AEC's action, Dr. T. M. Hahn, Jr., head of the physics department, said, "When completed, the new exponential reactor, along with the 2,000,000-volt nuclear accelerator, nuclear reactor simulator, and associated nuclear equipment, will give Virginia Tech nuclear facilities valued at nearly a half million dollars." He pointed out that all of these facilities have been acquired at a very little cost to Virginia taxpayers. Dr. Hahn predicted that the new sub-critical reactor made possible by the AEC will be completed and in operation by the end of the summer and will "provide an invaluable training and research facility for Virginia Tech's graduate nuclear engineering physics program." This early completion date is possible because college technicians have been at work for two months machining the 32,000 pounds of reactor graphite to be used in this new facility. The exponential pile will therefore be nearing completion and will be a tour feature when Virginia Tech is host to the Eighth Oak Ridge Regional Symposium on Atomic Energy and Science in its first Virginia appearance July 30-31. As a result of the AEC loan, Virginia Tech has acquired the new nuclear facility at minimum cost to the state. The new sub-critical reactor that will be constructed requires no unusual safety controls, expensive shielding or heat removal equipment, and can be maintained on a negligible operational budget as compared to that required for a critical reactor. "Yet such a sub-critical assembly," says Dr. Hahn, "provides a valuable laboratory training device." The sub-critical assembly consists of an arrangement of uranium rods in a graphite moderator. When a neutron source is introduced, a high neutron flux is obtained from nuclear fissions in the arrangement but the reaction can not be sustained without the presence of the main neutron source. The AEC announcement said, "Under a recent amendment to the Commission's assistance policy, neutron sources composed of plutonium and beryllium are now available for licensing to the users of sub-critical assemblies. This type of source is considered superior in many ways to those previously available." Concluded the AEC, "The Commission for some time has been supplying certain materials for these assemblies without a use charge being made, subject to the availability of the materials and to a determination that such loans will result in a net advantage to the Commission's program to assist in alleviating the current shortage of nuclear scientists and engineers." According to Dr. Hahn, plans are already afoot to use the nuclear accelerator, constructed by graduate students and faculty members, as a neutron source for the new exponential reactor, thus making possible more extensive fundamental and unusual reactor research. All of the nuclear facilities at Tech will have a prominent place in the Oak Ridge Symposium July 30-31 and the Short Course in Nuclear Engineering Physics to be given at Virginia Tech August 1-10. Sponsored by Virginia Tech, in cooperation with the Oak Ridge Institute of Nuclear Studies, Oak Ridge National Laboratory, and the Atomic Energy Commission, the symposium will feature a traveling exhibit from the American Museum of Atomic Energy, a General Electric film "A Is for Atom," and a variety of symposia on nuclear topics. The short course, first and most extensive of its kind in Virginia, will have leaders from major nuclear industries as lecturers in addition to members of the faculty.
Tech Gets Uranium For Reactor. July 1, 1956. The Techgram. Special Collections and University Archives, Virginia Tech.
Black and white semi-profile portrait of a white man with dark receding hair in a crew cut wearing a white dress shirt, dark tie with a single light stripe wrapping around it, and dark browline glasses.
Dr. T. Marshall Hahn, Jr. as Head of the Physics Department, circa 1950s.

According to The Techgram following their interview with Dr. T. Marshall Hahn, Jr., the sub-critical reactor was scheduled to come online in July (only six months after the approval) “because college technicians have been at work for two months machining the 32,000 pounds of reactor graphite to be used in this new facility. The exponential pile will therefore be nearing completion and will be a tour feature when Virginia Tech is host to the Eighth Oak Ridge Regional Symposium on Atomic Energy and Science in its first Virginia appearance July 30-31.”

The symposium hosted by Virginia Tech with support from the Oak Ridge Institute for Nuclear Studies (now the Oak Ridge Associated Universities – Virginia Tech has been a sponsoring institution since 1946) marked the opening of the lab. It included a short course in nuclear engineering physics, a traveling exhibit from the American Museum of Atomic Energy (now the American Museum of Science & Energy), a film from General Electric “A is for Atom”, and various symposia on nuclear topics.

General Electric film “A is for Atom” from the Nuclear Vault YouTube channel.

Two years after the opening of the lab, in 1958, Virginia Tech was awarded a grant from the Atomic Energy Commission that allowed the institution to purchase a 10-kilowatt Argonaut (Argonne Nuclear Assembly for University Training) reactor, a class of small nuclear research reactors based on the one developed at the Argonne National Laboratory. Unlike the sub-critical reactor that was already in operation, the Argonaut was a critical reactor meaning that the nuclear chain reaction would be self-sustaining. Virginia Tech was set to be the first university in the United States to install this new type of research reactor (according to Wikipedia, it’s possible the University of Florida beat Virginia Tech into operation by about six months).

The TECHGRAM Vol. XXXV, No. 19  July 1, 1958  Tech Gets $114,098 In Grant From AEC  The Atomic Energy Commission announced June 7 that it has granted VPI an additional $114,098 in support of continued expansion and strengthening of its program in nuclear engineering.  The new grant brought to a total of $350,000 the funds awarded Tech by the AEC and the maximum amount available to any academic institution from the commission. According to Dr. Thomas M. Hahn, Jr., head of Tech's department of physics, VPI is one of the first institutions in the country to receive the $350,000 limit. In addition to these funds, the AEC has made available to VPI 2,500 pounds of uranium and other special nuclear materials and equipment.   The new grant will be used for the pur- chase of a 10-kilowatt Argonaut reactor which was recently developed by the AEC specifical- ly for college and university use. VPI will be the first institution in the country to install the new reactor.  The Argonaut critical reactor will supplement the outstanding facilities already available for graduate nuclear engineering education here. These facilities, which have been attracting graduate students from all over the country, include a nuclear reactor simulator; two exponential reactors; a sigma pile; two accelerators; and well equipped counting, radio-chemistry, nuclear metallurgy, heat transmission, and nuclear engineering technology laboratories. Construction of a new physics building is scheduled to begin at Tech within the next few months.  The U. S. Naval Development Center plans to send several of their nuclear staff members to VPI this summer for special experimental training in reactor engineering under a special contract.
Tech Gets $114,098 In Grant From AEC. July 1, 1958. The Techgram. Special Collections and University Archives, Virginia Tech.

This new reactor was installed in the New Physics Building (now Robeson Hall) which was about to begin construction. It first achieved criticality in mid-December 1959 and was officially placed into operation on January 6, 1960. The occasion was marked by a dedication ceremony featuring an address by Lieutenant Governor A.E.S. Stephens. Eventually, the reactor’s operating capacity was increased from 10-kilowatts to 100-kilowatts.

Black and white illustration of a large piece of machinery with cutouts to show interior sections. A label at the bottom reads "Figure 3-1. Reactor Assembly"
Illustration of the nuclear reactor assembly from Andrew Robeson’s “Report on Utilization of Nuclear Materials on Loan from U.S. Atomic Energy Commission.” December 1962. Special Collections and University Archives, Virginia Tech.
Black and white photo of a white man in a dark suit kneeling next to an assembly of metal tubes, wires, and concrete blocks.
Cockcroft-Walton accelerator set up for use in polarized neutron experiments. The man is not named but is likely John T. Rogers, Ph.D. student. From Andrew Robeson’s “Report on Utilization of Nuclear Materials on Loan from U.S. Atomic Energy Commission.” December 1962. Special Collections and University Archives, Virginia Tech.

The atomic energy laboratories were expanded again in 1968 with the addition of a van de graaff accelerator. Four years later, on November 12, 1971, there was a “Nuclear Event” and Robeson Hall was evacuated. Our collections include a document called the “Appendix to Report of the Nuclear Event of November 12, 1971”. Despite searching extensively, I have not been able to locate the actual report to which this is an appendix. The document we have includes 161 pages of transcribed interviews with people involved in the event. The document has not been digitized but I’ve scanned the first few pages which include a description of the event by Ronald J. Onega. The full report is available in Special Collections and University Archives (https://catalog.lib.vt.edu/cgi-bin/koha/opac-detail.pl?biblionumber=603347).

The scram was at 3:05, … Bill attempted to bring the sample up and all the alarms went off. … This was in Room 106 where the experiment was being carried on and the reactor console is in Room 108, so I ran over there to find out if it was serious, if it was real or to see what the situation was. The alarm went on to begin with, as well as I recall, and then it went off and then it came back on. … It was suggested that the sample be knocked loose. We could see that the sample didn’t return, so I think that Keith suggested that we try to dislodge the sample, which was the reasonable suggestion, it seemed to me at that particular time, to dislodge the sample by firing another one in. We did that and whenever we brought the sample back, it was radioactive. It was very hot and so when we discerned this I think Bob Stone went out to get a lead container to put the hot radioactive sample in, and we fired it in again as I recall. We fired this sample in twice in order to try to dislodge this and bring it back, and neither time did the original sample come back. The sample was then – the container to dislodge the original one was then taken out of the rabbit, put into the lead container, as well as the end cap for the rabbit. Bill Raymond went and got another lead container in case we could get the original sample back, and he also got another end cap for the rabbit which I think he got from Room 17 from Furr’s lab. We tried several times to bring the sample back but none of it was successful. Well, after we saw we weren’t going to get it loose, Bob Stone, Sy Meyers, Bill Raymond and myself took some survey meters and we were trying to find out exactly where this sample was hung up. The sample was hung up right at the edge of the reactor shield itself. It was in the rabbit tubing, right at the edge of the shield and whenever we discerned exactly where it was, we got a screwdriver and disconnected the tubing there, taped the end shut and also disconnected the tubing, the other end of this aluminum tube that the sample was in, and taped that end shut. I handed the tube to Bob Stone who was standing on the top of the hot cell and he lowered the tube, with the sample in the tube, down into the hot cell where it still remains. Both ends of the remaining tubing were also sealed shut. … I guess I neglected to say that sometime previous to this, the building had been evacuated. I don’t remember exactly what that time was. I estimate, Bill and I estimated, that the whole incident required, perhaps from the time the sample, from the time the building alarm went off, originally, until the sample was secured in the hot cell may have been around twenty (20) minutes. But that is as good as we can estimate. During this time I also had a pocket dosimeter on, and during the whole business I got 51 millirem of radiation. After the sample was secured, then we tried to discern exactly what the situation was and we saw that we did have a contamination problem. Furr’s lab was used to discern exactly whether fission fragments were scattered around or not, and it was discerned that they were.

“Appendix to Report of the Nuclear Event of November 12, 1971” 1971. Virginia Polytechnic Institute. Special Collections and University Archives, Virginia Tech.

Other than that incident, the atomic energy laboratories seem to have operated smoothly under both the Physics and Mechanical Engineering departments. The Virginia Tech Argonaut Reactor (VTAR) was remodeled in 1983 with new control panels. Three years later, in 1986, it was decommissioned. It was removed from Robeson Hall in 1989.

Students working on the Virginia Tech Argonaut Reactor being observed by an instructor, circa 1950s.
Students working on the Virginia Tech Argonaut Reactor being observed by an instructor, circa 1950s.

Physics and The Man: Cold War Science and Dr. Robert Marshak

Robert Eugene Marshak was born October 11, 1916 in the Bronx in New York City to Jewish immigrant parents Harry and Rose Marshak. He excelled at school, attending City College of New York for a brief time before finishing his undergraduate degree at Columbia University. He then went on to receive his PhD in Physics from Cornell in 1939. He and his thesis advisor, Hans Bethe, researched the role of fusion in star formation. This work landed him a spot on the Manhattan Project in Los Alamos a few years later, where he assisted in the development of atomic weapons technology. Of particular note were his contributions to our understanding of how shock waves behave during high energy events such as nuclear explosions, which led to such waves being known as “Marshak waves”. 

After the war, Marshak returned to New York to take up a position in the Physics Department at Rochester University in Rochester. In 1947, as a participant in the Shelter Island Conference, Marshak presented a hypothesis theorizing the existence of a new class of subatomic particle, which was shortly to be confirmed. After becoming head of the University of Rochester Physics Department in 1950, Marshak established the Rochester Conference, now known as the International Conference on High Energy Physics, which still meets to this day. His work on weak interactions was instrumental to establishing the electroweak theory, which won Richard Feynman and Murray Gell-Mann a Nobel Prize. (Note: This statement regarding Feynman and Gell-Mann Nobel Prizes is incorrect. See correction in the comments.)

It is unclear what Marshak’s beliefs were before World War II, but, following his work on the Manhattan Project, he became a staunch supporter of open science and an end to the militarization of science and technology. He worked tirelessly to enhance scientific communication, protest nationalist scientific policies, and promote peace. While people who knew him frequently described him as being prickly, arrogant, and difficult to work with, he nevertheless used his position and renown within his field to support and advocate for scientists who found themselves persecuted by their own governments. He maintained an active correspondence with physicists and scientists all over the world and attended conferences, symposia, meetings, and workshops to learn and share his own knowledge. 

 

A letter to Marshak from Albert Einstein.

 

In 1970, he was offered the position of President at City College of New York, which he had once attended. He accepted, and ran the school for 9 years. As time wore on, he found he missed physics and teaching, so in 1979 he took up the position of University Distinguished Professor of Physics at Virginia Tech, where he stayed until his retirement in 1991. In 1983, while at Virginia Tech, he also served a year-long term as President of the American Physical Society, which is the largest organization of American physicists. 

One incident in particular highlights Marshak’s commitment to scientific freedom and openness.  Andrei Sakharov was a nuclear physicist from the Soviet Union. His life had a similar trajectory to Marshak’s. He too worked on nuclear technology for his country, and he too came to believe that weaponizing science was a sure path to war and destruction. However, his life turned out much differently than Marshak’s. In the 1950’s and 60’s, Sakharov began to advocate for peace and an end to nuclear testing. He became a well-known dissident within his own country, work which would eventually lead to his arrest, exile, and a Nobel Peace Prize. It is during this period where his story intersects with Marshak’s. In Marshak’s papers, one can trace the American’s growing concern with the danger and persecution facing his Soviet colleague, as well as his efforts to bring the situation to the attention of the global community and prevent harm from coming to Sakharov, who by now was known much more for his political actions than for his work as a physicist. Marshak did not face such overt threats, but his support of and communication with Soviet scientists throughout the Cold War period brought him under scrutiny at a time when the specter of communism made any connection to the USSR a dangerous one. He was forced to undergo several investigations by the House Un-American Activities Committee as a result of his work. Despite this, Marshak never stopped being an advocate for the peaceful sharing of science and technology. 

This only skims the surface of Marshak’s papers. The finding aid for his collections can be found here.  

 

This project was supported by a grant from the American Institute of Physics.

The Flying Man: 18th-century style

One of the great things about working in a place like Special Collections is that discovery can be an everyday occurrence. Ive written at this blogeither obliquely or directlyabout this dimension of the job, as have many of my colleagues. Whether the find is a promotional flyer for D.W. Griffiths Birth of a Nation, a journal from an arctic expedition, a letter written by Victoria Cross (one of several pseudonyms of British writer, Annie Sophie Cory), or a copy of The Great Gatsby autographed by F. Scott Fitzgerald . . . there is always some excitement even if you know that the discovery really may mean that you havent seen the item before. Someone else, perhaps a colleague, likely a predecessor, may have very well known about the book, letter, paper that youve just discovered.

Cover of LUomo Volante per Aria, per Acqua, e per Terra
Cover of LUomo Volante per Aria, per Acqua, e per Terra

So, several years ago, when I was perusing the part of our stacks that deals with aviation (the TLs for all you library-folk out there), I saw for the first time a nondescript book with a rough, brownish, handmade paper cover and pages that were clearly handmade, a book with a lot of age on it. When I opened up the book, this is what I saw: LUomo Volante per Aria, per Acqua, e per Terra. Novissima Invenzione di un Anonimo Italiano Dell Anno 1784. In Venizia Presso LAmico Dell Autore.

Roughly translated: Man Flying over the air, water, and land. New Inventions/Innovation of an Anonymous Italian of the Year 1784. In Venice at a Friend of the Author’s.

Title page ofTitle page of LUomo Volante per Aria, per Acqua, e per Terra. Novissima Invenzione di un Anonimo Italiano Dell Anno 1784. In Venizia Presso LAmico Dell Autore.
Title page of LUomo Volante per Aria, per Acqua, e per Terra. Novissima Invenzione di un Anonimo Italiano Dell Anno 1784. In Venizia Presso LAmico Dell Autore.

Most translations of the title that Ive seen are close variations of this. Could be through air or on water or on land, I suppose, but the date is clear; that it was published anonymously is clear; and it is completely clear that Id never heard of this work. A quick check showed that no English translation exists. A handwritten note on the inside front cover, reads (translated), The author is Count Carlo Bettoni. Again, he was unknown to me, but a little bit of investigating confirmed that is known to be the author of the book . . . and that only six copies are listed in Worldcat. This is the kind of discovery, a felicitous thing, that drives curiosity! That the two languages of the book, Italian and mathematics, are languages in which I am less than fluent, did nothing to quell my desire to know more.

"Dual-language" spread from LUomo Volante
“Dual-language” spread from LUomo Volante

So many things to investigate! What do we know about Count Bettoni? A few quick searches on the book title indicate that an individual named Giuseppe Avanzini contributed the mathematical content of the book, but what do all those equations seek to describe? Even more tantalizing . . . Worldcat shows that four of the six copies listed also include illustrations or folding plates! Our copy does not. The year of publication, 1784 is, itself, interesting. Only in late 1782 did the Mongolfier brothers of France start their experiments with balloons, with the first untethered balloon flight with a human aboard occurring on 21 November 1783 in a system of their design. It is fair to say that the early and mid 1780s saw the craze of ballooning emergeespecially in Britain and France, but also in Italyas a popular craze and a seductive possibility for scientific investigation. Apparently, Bettoni took part, but he also seems to have let his imagination range over . . . what, improved methods of transportation over land and sea, as well?

Bettoni was born in 1725 to a wealthy landowning family in what is now Brescia in the Lombardy region of north Italy. The aptly-named [?] Biographical Dictionary of the Society for the Diffusion of Useful Knowledge (184244) describes him as “a nobleman passionately fond of science, and a munificient patron of scientific men.” In 1768, he founded the Academy of Agrarian Brescia and, apparently, conducted experiments to protect mulberry trees from a rampant epidemic. In some circles, (see A General Collection of the Best and Most Interesting Voyages and Travels in All Parts of the World . . . Digested on a New Plan by John Pinkerton, vol. 4, 1809), and as a result of these experiments, Bettoni was credited with discovering a new silkworm! Bitten by the ballooning bug in 1783, Bettoni went to work with Avanzini on what would become L’Uomo Volante.

Born in 1753, Avanzini studied theology and mathematics at Brescia, while preparing himself for the priesthood. He came to Bettoni’s attention and had gained recognition for his skill as a mathematician by the time he collaborated with Bettoni on Thoughts on the Government of the Rivers (1782) a work that reported on the practice of planting specific kinds of trees along riverbanks to impede erosion and decrease the dangers of flooding. They would work together again after L’Uomo Volante on a large and unfinished project to produce a topographical map of the area surrounding Lake Garda, the largest lake in Italy located about halfway between Brescia and Verona. Whatever the nature of the collaboration between the two men, it is clear that the substance of the mathematical element Avanzini contributed to L’Uomo Volante and to other projects, was the work of a man who would go on to become professor of mathematics and, later, of physics and applied mathematics at the University of Padua. His work, primarily in the area of fluid dynamics, would earn him membership in the Italian National Academy of Sciences (Societ Italiana). While I am not qualified to judge the quality and appropriateness of the mathematics in L’Uomo Volante, I would guess that it could be evaluated seriously.

The Enciclopedia Italiana di Scienze, Lettere ed Arti describes L’Uomo Volante, in one of the few characterizations I have found, as “miscuglio piuttosto audace di prosa scientifica e di progetti palesemente utopistici” (translated as “a rather bold mixture of scientific prose and blatantly utopian projects”). The Enciclopedia, also known as Treccani says that Bettoni, an “agricultural and technical aviation pioneer,” was the first to propose a dirigible balloon and a system of propulsion based on rowing. Other sources also suggest his is the first recorded version of an elongated airship, a spindle-shaped balloon, rather than the spherical balloons either in use or proposed at the time. (The use of the word “dirigible” suggests a rigid frame, but I do not know if this is part of the Bettoni/Avanzini design.)

Macchina volante per aria (Flying machine for the air, Tav. 2 (with permission: Fondazione Istituto Internazionale di Storia Economica "F. Datini" Biblioteca in Linea)
Macchina volante per aria (Flying machine for the air, Tav. 2 (with permission: Fondazione Istituto Internazionale di Storia Economica “F. Datini”
Biblioteca in Linea)

Of course, there were plans for the more typical version, as well, but with some accommodation for steering and/or propulsion.

Macchina volante per aria (Flying machine for the air, Tav. 1 (with permission: Fondazione Istituto Internazionale di Storia Economica "F. Datini" Biblioteca in Linea)
Macchina volante per aria (Flying machine for the air, Tav. 1 (with permission: Fondazione Istituto Internazionale di Storia Economica “F. Datini”
Biblioteca in Linea)

There were also two drawings included for water travel, one involving an elongated system of paddles:

But now, when we come to land, well, this giant-sized hampster wheel really got my attention! Check it out!

Carro volante per terra, Flying chariot/cart/wagon for land (with permission: Fondazione Istituto Internazionale di Storia Economica "F. Datini")
Carro volante per terra, Flying chariot/cart/wagon for land (with permission: Fondazione Istituto Internazionale di Storia Economica “F. Datini”)

So, should we ignore this work that seems to have garnered little attention over a couple of centuries? Is it the work of a wealthy amateur scientist (read: crackpot) whose mathematician colleague lent his skills for a free ride? Is it to be taken seriously? Doesn’t someone want to translate it? Is this the basis for a thesis or dissertation just waiting, screaming, in fact, to be tackled? Surely, some student in the history of science and technology wants to rediscover Signori Bettoni and Avanzini. Ladies and Gents, Studente e Studentesse . . . step right up!

Click here for the Full Text of L’uomo volante per aria, per acqua e per terra. (Will open in a new window.)

The First Rochester Conference on High Energy Physics . . . . . . . . A Unique Discovery

Typescript Cover for Manuscript Proceedings and Notes, First Rochester Conference on High Energy Physics
Typescript Cover for Manuscript Proceedings and Notes, First Rochester Conference on High Energy Physics

Robert Marshak in 1979
Robert Marshak in 1979

Original materials. One-of-a-kind documents. This is what one expects to find in Special Collections. Any Special Collections. All Special Collections. It is our business. But every once in a while, you come across a unique document and, “surely,” you say to yourself, “there must be another copy of it somewhere.” Yes, it is unique because it is a particular individual’s copy, maybe with his or her annotations, but this can’t possibly be the only copy that exists! And then you find out, maybe, it is. Could the proceedings from the first Rochester Conference on High Energy Physics, part of the Robert E. Marshak Papers, 1947-1990, be such a document?

The first Conference on High Energy Physics to be held in Rochester, NY took place on 16 December 1950. It was organized largely by Robert Marshak, then the new chair of the Physics Department at the University of Rochester. Marshak had started at Rochester in 1939 and, following the outbreak of the war, worked first in Boston on furthering the development of radar and then, in Montreal, contributing to the British effort to produce an atomic bomb. In 1944, he joined the American atomic effort at Los Alamos, where he was a deputy group leader in theoretical physics. With the end of the war, however, inquiry into the realm of nuclear and particle physics no longer needed to be restricted to its practical aspects.

That first meeting in Rochester followed by 20 months the last of the three Shelter Island conferences that had been organized by Robert Oppenheimer between 1947 and 1949. Marshak, who attended these meetings and at which he first proposed the influential two-meson theory, described them as having been “limited to a small number of theorists, with a couple of ‘token’ experimentalists,”* nearly all American. The goal for the Shelter Island meetings, which involved approximately 25 attendees, was to assess the post-war status of particle physics and to provide an outlook for future developments. Marshak’s vision was to invite a more equal mix of theorists, accelerator experimentalists, and cosmic ray experimentalists and to make the meeting truly international. The increased emphasis on the experimental aspect of the field reflected not only Marshak’s interests, but also the fact that five new high-energy accelerators had been built in the U.S. since the end of the war—including one at Rochester—and they were producing results.

An early proposal for the Rochester conference was sent to the University of Rochester’s provost, Donald Gilbert, on 11 January 1949, before the last of the three Shelter Island meetings. The proposal was for a five-day event that included a one-day trip to the accelerator facilities at Cornell. It came with a request to the university for $7500. A letter written by Marshak to Joseph C. Wilson, head of The Haloid Company (which would become Xerox Corp.), dated 22 January 1950, makes clear that funding for the proposal would need to come from private sources.

Conference Invitation, 29 November 1950
Conference Invitation, 29 November 1950

Click here to see Invitation, Annotated Attendee List, & Attendee Sign-in. (Will Open in New Window)

By the fall of 1950, the conference was planned as a one-day event and scheduled for 16 December. The Physics building on campus would remain open the following day for post-conference meetings/ presentations and Professor Wolfgang Panofsky extended his visit for a week to include a public lecture and special colloquia on new frontiers and recent experiments. A first round of invitations to general attendees may have been sent out in late October or early November, as the earliest acceptance among the materials is dated 7 November. Another general invitation in the collection is dated 29 November. Invitations were sent to approximately 100 top physicists as well to interested representatives of local industries, including Haloid, which provided financial support for the conference.

Interestingly, in a hand-written reply to a request that he participate in some of the post-conference discussion, Richard Feynman wrote:

Richard Feynman's Reply, 13 December 1950
Richard Feynman’s Reply, 13 December 1950

O.K. I’ll stick around a couple of days more and talk things over. We’ll worry about what the lectures are later. In the meantime something general like ‘Field Theory’ or something will do as a title I guess. You make the title, I’ll talk on it.

Three sessions were scheduled for the day-long program: a morning session dealing with experiments with nucleons, chaired by Abraham Pais; an afternoon session on experiments with mesons, chaired by Robert Oppenheimer; and an evening session chaired by Hans Bethe on experiments with photons and electrons. In a June 1970 article for “Bulletin of the Atomic Scientists,” Marshak wrote:

There were three sessions of invited papers at this first Rochester Conference, chiefly experimental reports on nucleon elastic scattering and meson production by nucleons and photons. Theoretical discussion on the experimental findings was useful, but I do not recall any breakthroughs.

Scientific Program, Original, page 1
Scientific Program, Original, page 1

Click here to See the Scientific Program for the Conference, both Original and Annotated. (Will Open in New Window)

The manuscript of the proceedings begins with a 6-page summary of the morning session written up by R.S., possibly R. Scalettar, a colleague of Marshak’s from Rochester’s Physics Department. What follows are approximately 120 pages of marked-up typescript, a transcript of the days presentations and discussion. As is clear from the manuscript, the days events were recorded on audio tape, which provided the basis for the transcription. (The fate of the original tape is anyone’s guess.) In addition to notes on various pages regarding “reel” and “side” numbers, the following note is found very early in the transcription of the morning presentation:

about 3 minutes of Ramsey’s speech is not available to us at this point because the plug to the recording machine was kicked out of wall.

Is it comforting—or, perhaps, simply humbling—to recognize that our knowledge of this conference of the most esteemed representatives of the most advanced technology of the day depended, in part, on the recognition that an electric plug had been kicked out of the wall?

There is also the following note from the person producing the transcript:

(broke tape at this point, after spending nearly two hours learning operation of machine and taking notes. It took from 30 to 45 minutes to learn the machine and listen to the speech once and the rest of the time was taking notes, a few words at a time and rewinding frequently when I couldn’t keep up or missed a word. B.)

There is some indication that written proceedings were to be distributed to the participants in the conference. It remains unclear whether this was done, but it appears doubtful. John Polkinghorne, in his 1989 book, Rochester Roundabout: The Story of High Energy Physics, states unequivocally, “No Proceedings are publicly available of the first Conference.” (p.198). I have found no others. In his 1986 book, Inward Bound: Of Matter and Forces in the Physical World, Abraham Pais, a participant in the 1950 conference, notes his thanks to Robert Marshak for “making available to me an unedited transcript of that meeting.” (note, p.461). These are, presumably, copies of the typescript held here in the Marshak Papers. Lastly, in June 2014, a set of the proceedings of the First through Seventh Rochester Conferences on High Energy Physics was sold through Bonhams auction house. The description specifies:

Nuclear Physics, Rochester Conferences: Bonhams Auctioneers
Nuclear Physics, Rochester Conferences: Bonhams Auctioneers

Vol. I: mimeographed typescript draft with ms corrections, in 3-ring binder, with ms note to Abraham Pais from Robert Marshak, founder of the Rochester Conferences. (http://www.bonhams.com/auctions/21652/lot/130/ last viewed 10 July 2015)

Can we presume that this is the copy Pais refers to in his book? Are there any others? Perhaps not.

Marshak’s initial conference grew to become the event of lasting and international significance that he envisioned. The Third Conference, held December 18–20, 1952, had 150 participants, had governmental support for the first time, and included scientists from Great Britain, Italy, Australia, France, Holland, and Japan, among other countries. The Sixth Conference, held in April 1956, saw the attendance of the first Soviet delegation. The following year, 300 scientists from 24 countries attended the Seventh Conference, which ran for 5 days. It had become what John Wheeler, physicist from Princeton, called the “premier opportunity for the physicists of the world to exchange ideas.” After the Seventh Conference, the newly organized High Energy Commission of the International Union of Pure and Applied Physics (IUPAP) decided to establish a three-way rotation for the annual conference with the 1958 meeting in Geneva and the 1959 meeting in Kiev. In 1960, the Tenth Conference&—lasting eight days and with 36 scientific secretaries also participating—was back in Rochester, but for the last time before the officially named International Conference on High Energy Physics left permanently for more varied venues and a biennial schedule.

Robert Marshak joins faculty at Virginia Tech, 1 Sept. 1979
Robert Marshak joins faculty at Virginia Tech, 1 Sept. 1979

In 1970 Marshak left Rochester to become president of the City College of New York, and in the fall of 1979 became a University Distinguished Professor of Physics at Virginia Tech. He retired as Emeritus University Distinguished Professor in 1987. Robert E. Marshak died on 23 December 1992.

Although the conference that began with Marshak’s small one-day event is now being held around the world, it is still commonly referred to as the Rochester conference. The proceedings of that first meeting are now publicly available, likely for the first time.

First Rochester Conference, Manuscript Notes and Proceedings, page 1
First Rochester Conference, Manuscript Notes and Proceedings, page 1

Click here for the Full Text of the Proceedings and Notes of the First Rochester Conference on High Energy Physics, held 16 December 1950. (Will open in a new window.)

All of this material and more will eventually find its way to this department’s platform for digital content, Special Collections Online, but until then, for this material, this post will have to serve in its place.

Notes:

*Marshak, Robert E., Scientific impact of the first decade of the Rochester conferences (1950–1960, in Pions to Quarks: Particle Physics in the 1950s, Laurie M. Brown, Dresden, and Hoddeson, eds., New York: Cambridge University Press, 198